Biology Lecture 7 – The Cardiovascular System; The Respiratory System

The Cardiovascular System

Systemic Circulation
Left ventricle → aorta → arteries → arterioles → capillaries → venules → veins → superior/inferior vena cava → right atrium → right ventricle

Pulmonary Circulation
Right ventricle → pulmonary arteries → lungs → pulmonary veins → left atrium → left ventricle

Electrical Pathway
Sinoatrial node (SA node, in atrium) → atrioventricular node (AV node, between atria) → bundle of His (between ventricles) → Purkinje fibers (in ventricles)

- SA node sends electrical signals by itself
- Vagus nerve slows down SA node frequency (parasympathetic)
- Cardiac cells connected by gap junctions in a syncitium

Vessels
- Arteries/arterioles: elastic, smooth muscle
- Epinephrine (sympathetic) causes smooth muscle to contract, increases BP
- Capillaries: tiny blood vessels, one cell thick, allow nutrients & gases to path thru
 - Movement of fluid regulated by osmotic vs. hydrostatic pressure:
 - Osmotic pressure stays the same, hydrostatic pressure higher on arteriole side
- Veins/venules: stores most of body’s blood, have one-way valves to prevent backward flow
- Blood flow is slowest in capillaries b/c in total they have most cross sectional area (Av=Av)
- Blood pressure is highest in arteries, lowest in capillaries, low in veins
- Skeletal muscle contraction help blood move through veins
Biology Lecture 7 – The Cardiovascular System; The Respiratory System

Examkrackers MCAT Comprehensive Course, Charles Feng
http://fenguin.net/mcat fenguin@gmail.com (224) 532-0039

Respiratory System

Air Pathway
Nasal cavity → pharynx → larynx → trachea → bronchi → bronchioles → alveoli

- **Nasal cavity**: filters/moistens/warms air b/c of hair and mucus
- **Pharynx**: food and air can both path through here
- **Epiglottis**: covers trachea when swallowing, opens when breathing
- **Larynx**: voice box right underneath epiglottis, vocal cords vibrate to make sound
- **Trachea**: main windpipe, made of cartilage, has mucus + cilia on walls
- **Bronchi**: 2 divisions of trachea, one to each lung, also has cilia/mucus
- **Alveoli**: tiny air sacs one cell thick, allows diffusion between gas + capillaries

Gas Exchange
- **Inhaled air**: 79% N₂, 21% O₂
- **Exhaled air**: 79% N₂, 16% O₂, 5% CO₂
- Oxygen is carried by hemoglobin inside red blood cells
 - 4 polypeptide protein, each having a **heme** group made of iron and each binding to one O₂
- **Oxyhemoglobin dissociation curve**: at different pressures of oxygen, different % of hemoglobin will be bound to oxygen
 - HIGH pressures (aka in lungs) cause increased binding, so O₂ can enter erythrocytes
 - LOW pressures (aka in tissues) cause decreased binding, so O₂ can enter tissues
 - The curve can shift depending on environmental conditions:
 - WHAT’S GOING ON IN EXERCISING MUSCLE TISSUE WILL SHIFT IT TO THE RIGHT
 - Higher CO₂ pressure/concentration = rightward shift
 - Higher temperature = rightward shift
 - More acidic (higher [H⁺]) = rightward shift
 - Higher 2,3-DPG = rightward shift
- Carbon dioxide is usually transported as **bicarbonate ion** (HCO₃⁻) b/c of **carbonic anhydrase** in red blood cells
 - This means higher CO₂ concentration = more acidic
- Carbon dioxide also has dissociation curve
 - In lungs, when Hb holds more oxygen, less CO₂ will be able to bind → it’s released into lungs
Biology Lecture 7 – The Cardiovascular System; The Respiratory System

Lymphatic System

- **Responsible for:**
 - Storing fluid to increase/decrease BP
 - Transporting proteins/large particles
 - Carries fatty acids from intestines to thoracic duct (in neck), emptying into veins
 - Lymph nodes have lots of lymphocytes (a type of leukocyte)

- Lymph vessels have one-way valves to force fluid flow in one direction

Blood

Proteins

- *Albumin:* carry fatty acids/steroids
- *Immunoglobulins/antibodies:* play a role in immune system
- *Fibrinogen:* clotting factor, a zymogen which is activated by platelets to form fibrin

Erythrocytes

- Produced in bone marrow from stem cells
- No organelles, no nucleus, just contain hemoglobin
- Live for 120 days, recycled in spleen/liver

Leukocytes

- Produced in bone marrow from stem cells
- Can be granular or agranular
 - *Granular* are first line of defense, target anything foreign and have short lifetime
 - *Agranular* are second line, target specific things and have long lifetime

Platelets

- Chopped up megakaryocytes in bone marrow
- No nucleus, but have Golgi, mitochondria, ER, etc.
- When you cut yourself platelets aggregate first to form a plug, then convert prothrombin to thrombin, which converts fibrinogen to fibrin to form a clot
Immune System

INNATE IMMUNITY

1. Skin/digestive system forms first line of defense
2. *Macrophages, neutrophils* eat up foreign organisms through phagocytosis
3. *Inflammation* occurs where blood vessels dilate, capillaries become more permeable in order to let more blood cells go to the area

ACQUIRED IMMUNITY

B cell/humoral immunity:
- *B lymphocytes* mature in bone marrow/liver, make antibodies
- *Antibodies* recognize an antigen on surface of foreign particles, can cause *agglutination*, deactivation or signal cells to eat the foreign substance
- *Primary response*: when an antibody sees a matching antigen, it will cause the B lymphocyte to differentiate into *plasma cells* (which make a ton of antibodies) and *memory B cells* (which “remember” the foreign antigen for the future)
- *Secondary response*: when the same antigen is seen by the body, memory B cells will start producing antibodies quickly to get rid of it
- USEFUL FOR FOREIGN ORGANISMS
Biology Lecture 7 – The Cardiovascular System; The Respiratory System

Examkrackers MCAT Comprehensive Course, Charles Feng
http://fenguin.net/mcat — fenguin@gmail.com — (224) 532-0039

T cell/cell-mediated immunity
- *T* lymphocytes mature in the thymus
- *Helper T cells* help B lymphocytes to differentiate
- *Suppressor T cells* decrease immune response when unneeded
- *Memory T cells* can remember foreign substances for better response later
- *Killer/cytotoxic T cells* poke holes in foreign cell membranes
- USEFUL FOR INFECTED/CANCEROUS BODY CELLS

Blood types
- Blood has A and B surface antigens. If your body sees blood cells w/ an antigen not recognized by body, it’ll kill it.
- So people with AB blood type have both antigens, if you put their blood into anyone without AB then it’ll be destroyed
- People with O blood type have no antigens, so you can put their blood into anyone
- Rh factor is another type of antigen that can cause problems in pregnancy